Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Ping Zhang and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
Disorder in main residue
R factor $=0.065$
$w R$ factor $=0.157$
Data-to-parameter ratio $=11.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The cyclic dimer $\operatorname{bis}\left(\mu_{2}-4\right.$-sulfonatobenzoato)-bis[(di-2-pyridylamine)copper(II)] trihydrate

The title complex, $\quad\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, comprises the centrosymmetric cyclic dimeric $\mathrm{Cu}^{\mathrm{II}}$ complex and uncoordinated water molecules. The $\mathrm{Cu}^{\mathrm{II}}$ atom displays a distorted square-pyramidal geometry. Within the cyclic dimer, the $\mathrm{Cu} \cdots \mathrm{Cu}$ separation is 9.5362 (12) \AA.

Comment

In recent decades, a great number of dimeric complexes have been synthesized and structurally characterized (Huang et al., 2003; Rochon \& Massarweh, 2001; Heinze et al., 1998), among which several are cyclic (Lawrence et al., 2001; Burrows et al., 1997). 4-Sulfobenzoic acid $\left(\mathrm{H}_{2} \mathrm{sb}\right)$ is a good bridging ligand for the construction of cyclic dimers (Fan et al., 2005, 2004). Here, we present the title new cyclic complex, (I), bridged by sb^{2-} anions.

(I)

The centrosymmetric dimer of (I) is shown in Fig. 1. The $\mathrm{Cu}^{\mathrm{II}}$ atom adopts a distorted square-pyramidal geometry (Table 1), formed by two N donors from one $2,2^{\prime}$-dipyridylamine and three O atoms, two from a carboxyl group and one from a sulfonyl group of the other sb^{2-} anion. The sulfonyl atom O^{i} [symmetry code: (i) $1-x, 1-y, 1-z$] occupies the apical site. The bridging mode of the sb^{2-} anion in (I) is similar to that found in $\left[\mathrm{Cd}(\text { phen })(\mathrm{sb})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}$ (phen is 1,10-phenanthroline; Fan et al., 2005) but different from that found in $\left[\mathrm{Cu}\left(2,2^{\prime} \text {-bipy }\right)(\mathrm{sb})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}$ (2,2'-bipy is $2,2^{\prime}$-bipyridine; Fan et al., 2004). In the cyclic dimer molecule, the $\mathrm{Cu} \cdots \mathrm{Cu}$ separation of 9.5362 (12) \AA is shorter than the value of 9.7495 (8) \AA in $\left[\mathrm{Cu}\left(2,2^{\prime} \text {-bipy)(sb) }\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\right.$ (Fan et al., 2004). The benzene ring is coplanar with the carboxyl group, the dihedral angle being $0.6(8)^{\circ}$. The two pyridine rings of the $2,2^{\prime}$-dipyridylamine subtend a dihedral angle of 11.8 (4) ${ }^{\circ}$.

In the crystal structure of (I), extensive hydrogen bonding occurs between uncoordinated water and the complex molecules (Table 2).

Received 16 June 2005 Accepted 28 June 2005 Online 6 July 2005

Experimental

A mixture of copper(II) acetate hydrate ($0.040 \mathrm{~g}, 0.2 \mathrm{mmol}$), potassium hydrogen 4 -sulfobenzoate ($0.048 \mathrm{~g}, 0.2 \mathrm{mmol}$), 2, 2^{\prime}-dipyridylamine ($0.031 \mathrm{~g}, 0.2 \mathrm{mmol}$), $\mathrm{NaOH}(0.020 \mathrm{~g}, 0.5 \mathrm{mmol})$ and water $(15 \mathrm{ml})$ was heated at 423 K for 72 h in a 30 ml Teflon-lined stainlesssteel autoclave. After cooling to room temperature, a green solution was obtained. Green block-shaped single crystals of (I) were obtained from the resulting solution after 1 d .

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=923.86$
Triclinic, $P \overline{1}$
$a=8.2409$ (5) \AA
$b=9.8064$ (6) A
$c=11.5670(7) \AA$
$\alpha=87.027(1)^{\circ}$
$\beta=85.507(1)^{\circ}$
$\gamma=80.552(1)^{\circ}$
$V=918.5$ (1) \AA^{3}

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.629, T_{\text {max }}=0.813$
6651 measured reflections

$Z=1$

$$
D_{x}=1.670 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3422 reflections
$\theta=2.5-27.7^{\circ}$
$\mu=1.35 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, green
$0.38 \times 0.19 \times 0.16 \mathrm{~mm}$

3218 independent reflections
2979 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-11 \rightarrow 11$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
\begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0638 P)^{2}\right. \\
\quad+2.1586 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.98 \text { e } \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-_{0.52 \mathrm{e}^{-3}}
\end{gathered}
$$

Figure 1
The dimeric structure of (I), with 40% probability displacement ellipsoids (arbitrary spheres for H atoms). Minor disordered components have been omitted for clarity. [Symmetry code (i): $1-x, 1-y, 1-z$.]

The sulfonyl atom O 4 is disordered over two positions; two occupancies were initially refined. They converged to 0.503 (4) and 0.497 (4), and then each was fixed at 0.5 in the final cycles of refinement. One uncoordinated water atom (O1W) was also disordered over two positions; the occupancies were initially refined. They converged to 0.532 (4) and 0.468 (4), and were then fixed at 0.57 and 0.43 , respectively, in the final cycles of refinement. H atoms on O atoms were located in a difference Fourier map and refined by riding on their as-found positions relative to the O atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{O})$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and were included in the final cycles of refinement in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atoms.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the National Natural Science Foundation of China (grant No. 50073019).

References

Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Burrows, A. D., Mingos, D. M. P., Lawrence, S. E., White, A. J. P. \& Williams, D. J. (1997). J. Chem. Soc. Dalton Trans. pp. 1295-1300.

Fan, S. R., Xiao, H. P., Zhang, L. P. \& Zhu, L. G. (2004). Acta Cryst. E60, m1833-m1835.
Fan, S. R., Zhang, L. P., Xiao, H. P., Cai, G. Q. \& Zhu, L. G. (2005). Z. Kristallogr. New Cryst. Struct. 220, 69-70.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Heinze, K., Huttner, G. \& Schober, P. (1998). Eur. J. Inorg. Chem. 183-189.
Huang, W., Hu, D., Gou, S., Qian, H., Fun, H.-K., Raj, S. S. S. \& Meng, Q. (2003). J. Mol. Struct. 649, 269-278.

Lawrence, R. G., Hamor, T. A., Jones, C. J., Paxton, K. \& Rowley, N. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2121-2126.

Rochon, F. D. \& Massarweh, G. (2001). Inorg. Chim. Acta, 314, 163-171.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.

[^0]
[^0]: Symmetry codes: (ii) $x+1, y-1, z-1$; (iii) $1-x,-y,-z$; (iv) $1-x,-y, 1-z$; (v)
 $-x, 1-y, 1-z$.

